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1 The Blind-Mani Theorem

1.1 Acyclic orientations

Let’s prove the Blind-Mani theorem.

Theorem 1.1 (Blind-Mani). Let P ⊆ Rd be a simple, convex polytope. Then the face
lattice α(P ) is determined by the graph Γ(P ) of the polytope.

Example 1.1. Here are non-simple convex polytopes with don’t satisfy this theorem. Let
Γ = K6 be the complete graph on 6 vertices. Then the simplex ∆5 has graph Γ. But there
also exists a polytope Q ⊆ R4 such that f0 = 6 and Γ(Q) = K6. To construct Q, think of
R4 as R2×R2. Take two triangles, one in each copy of R2, and connect them together. So
Q = ∆2×∆2. Note that α(Q) 6∼= α(∆5). This is an example in a large family of polytopes
called neighborly polytopes, which have Γ(P ) ∼= Kn.

Proof. (Kalai1) Let Γ = Γ(P ). This is connected. Let d = deg(Γ). Γ is d-regular. Let O
be the acyclic orientation of the edges E (so the edges all receive an orientation such that
no cycles form). Now define hOi be the number of vertices v ∈ V with out degree equal to
i. This is to take the place of Morse functions in our proof.

Define O to be good if T ∈ α(P ) has a unique source. How do we know if an orientation
is good?

Lemma 1.1. Let α(O) := hO0 +2hO1 +4hO2 + · · ·+2dhOd . Then α(O) ≥ f0 +f1 + · · ·+fd =:
β(P ). Moreover, α(O) = β(P ) if and only if O is good.

This is Theorem 8.6 in Professor Pak’s textbook. Let’s prove the lemma.

1The original proof was “plain boring,” according to Professor Pak. But this proof is more interesting
than the theorem itself.
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Proof. Suppose O is an acyclic orientation coming from a Morse function ϕ on P ⊆ Rd.
Then hOi = hϕi . Then from the Dehn-Sommerville equations, fk =

∑d
i=k

(
i
k

)
hOi . Then

β(P ) =
∑d

k=0 fk = FP (1) = GP (2) =
∑d

i=0 h
O
i 2i. If O is good, then, we have the same

equality (α(O) = β(P )) because our proof of the Dehn-Sommerville equations only relied
on the fact that each face had a unique source.

If O is any orientation, we write the same thing, except fk ≤
∑d

i=0 h
O
i

(
i
k

)
. So α(O) ≥

β(P ). Then the only way to get an exact equality is if we never count a face twice. This
is only if every face has a unique source.

Now we need to use this characterization to find out when a subgraph of Γ(P ) is the
graph of a face.

1.2 The face criterion

Let Γ = Γ(P ) be the graph of a simple d-dimensional polytope, and let O be a good
acyclic orientation of Γ. Think of a face as Γ(F ) ⊆ Γ, where V (F ) ⊆ V (P ). Suppose
deg(Γ(F )) = k.

Proposition 1.1. H ⊆ Γ(F ) is a graph of a face if and only if the following two conditions
are satisfied:

1. Γ(F ) is k-regular.

2. There exists a good orientation O such that V (F ) is final (no edges from outside
V (F ) are oriented into V (F )).

Proof. Suppose F ∈ α(P ) is a k-dimensional face. Then H = Γ(F ) is k-regular. There
also exists a final O on H; take a hyperplane containing that face, perturb it a little, and
take a Morse function that defines O.

For the opposite direction, take the minimum point (since O is final). Create 2 graphs,
one spanned by Γ(F ) and one containing everything you can reach from the minimum
vertex. They are both k-regular and one contains the other, so they are equal.
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